

MRTBS 2024 I Międzynarodowa Konferencja

Nowoczesne trendy badawcze w naukach biomedycznych: holistyczne ujęcie opieki zdrowotnej. Opole, Polska, 17-19.04.2024

Metal ions – the eminence grise of antimicrobial peptides?

Magda Rowińska-Żyrek

Deaths From Drug-Resistant Infections Set To Skyrocket

Deaths from antimicrobial resistant infections and other causes in 2050

European Comission, AMR Factsheet, 2017 ECDC Data and reports: Antimicrobial resistance and consumption, 2014

K. pneumoniae

S. pneumoniae

The Center for Disease, Dynamics Economics & Policy. ResistanceMap: Antibiotic resistance. 2021. https://resistancemap.cddep.org/AntibioticResistance.php. Date accessed: April,15 2021.

AMPs (AntiMicrobial Peptides):

- Short, 7-100 amino acid peptides, active against bacteria, fungi, viruses and even cancer cells
- AMP mode of action: (i) disruption of lipid bilayers; (ii) inhibition of inner-cell processes; (iii) sequestering metal ions (taking part in 'nutritional immunity')

AMPs (AntiMicrobial Peptides):

- Short, 7-100 amino acid peptides, active against bacteria, fungi, viruses and even cancer cells
- AMP mode of action: (i) disruption of lipid bilayers; (ii) inhibition of inner-cell processes; (iii) sequestering metal ions (taking part in 'nutritional immunity')

Impact of metal ions on AMP activity:

- AMPs sequester metal ions, so that microbes cannot get enough of them for their survival and virulence
- AMPs need the metal to boost their antimicrobial efficiency, affecting the charge/structure of the peptide

Łoboda D., Kozłowski H., Rowińska-Żyrek M., N J Chem., 2018, 42, 7560

AMPs (AntiMicrobial Peptides):

- Short, 7-100 amino acid peptides, active against bacteria, fungi, viruses and even cancer cells
- AMP mode of action: (i) disruption of lipid bilayers; (ii) inhibition of inner-cell processes; (iii) sequestering metal ions (taking part in 'nutritional immunity')

Impact of metal ions on AMP activity:

- AMPs sequester metal ions, so that microbes cannot get enough of them for their survival and virulence
- AMPs need the metal to boost their antimicrobial efficiency, affecting the charge/structure of the peptide

Łoboda D., Kozłowski H., Rowińska-Żyrek M., N J Chem., 2018, 42, 7560

AMPs enhanced by Zn(II) and Cu(II):

Semenogelins

Sgl	1	MKPNIIFVLSLLLILEKQAAVMGQKGGSKGRLPSEFSQFPHGQKGQHYSGQKGKQQTESK	60
Sgll	1	MKSIILFVLSLLLILEKQAAVMGQKGGSKGQLPSGSSQFPHGQKGQHYFGQKDQQHTKSK	60
Sgl	61	GSFSIQYTYHVDANDHDQSRKSQQYDLNALHKTTKSQRHLGGSQQLLHNKQEGRDHDKSK	120
Sgll	61	GSFSIQHTYHVDINDHDWTRKSQQYDLNALHKATKSKQHLGGSQQLLNYKQEGRDHDKSK	120
Sgl	121	GHFHRVVIHHKGGKAHRGTQNPSQDQGNSPSGKGISSQYSNTEERLWVHGLSKEQTSVSG	180
Sgll	121	GHFHMIVIHHKGGQAHHGTQNPSQDQGNSPSGKGLSSQCSNTEKRLWVHGLSKEQASASG	180
Sgl	181	AQKGRKQGGSQSSYVLQTEELVANKQQRETKNSHQNKGHYQNVVEVREEHSSKVQTSLCP	240
Sgll	181	AQKGRTQGGSQSSYVLQTEELVVNKQQRETKNSHQNKGHYQNVVDVREEHSSKLQTSLHP	240
Sgl	241	AHQDKLQHGSKDIFSTQDELLVYNKNQHQTKNLNQDQQHGRKANKISYQSSSTEERRLHY	300
Sgll	241	AHQDRLQHGPKDIFTTQDELLVYNKNQHQTKNLSQDQEHGRKAHKISYPSSRTEERQLHH	300
Sgl	301	GENGVQKDVSQSSIYS	316
Sgll	301	GEKSVQKDVSKGSISIQTEEKIHGKSQNQVTIHSQDQEHGHKENKISYQSSSTEERHLNC	360
Sgl	316		316
Sgll	361	GEKGIQKGVSKGSISIQTEEQIHGKSQNQVRIPSQAQEYGHKENKISYQSSSTEERRLNS	420
Sgl	317	QTEEKAQGKSQKQITIPSQEQEHSQKANKISYQSSSTEERRLHY	360
Sgll	421	GEKDVQKGVSKGSISIQTEEKIHGKSQNQVTIPSQDQEHGHKENKMSYQSSSTEERRLNY	480
Sgl	361	GENGVQKDVSQRSIYSQTEKLVAGKSQIQAPNPKQEPWHGENAKGESGQSTNREQDLLSH	420
Sgll	481	GGKSTQKDVSQSSISFQIEKLVEGKSQIQTPNPNQDQWSGQNAKGKSGQSADSKQDLLSH	540
Sgl	421	EQKGRHQHGSHGGLDIVIIEQEDDSDRHLAQHLNNDRNPLFT	462
Sgll	541	EQKGRYKQESSESHNIVITEHEVAQDDHLTQQYNEDRNPIST	582

Antimicrobial fragments of semenogelins from the human semen (peptides: SgIIA, SgI-29 and their common 15-aa fragment, Sg-15) bind Zn(II) and Cu(II) ions via a $[NH_2, 3N_{im}]$ donor set at physiological pH

Dorota Dudek, Adriana Miller, Aleksandra Hecel, Arian Kola, Daniela Valensin, Aleksandra Mikołajczyk, Miquel Barcelo-Oliver, Agnieszka Matera-Witkiewicz, Magdalena Rowińska-Żyrek, Inorganic Chemistry, 2023, https://pubs.acs.org/doi/10.1021/acs.inorgchem.3c02390

AMPs enhanced by Zn(II) and Cu(II):

Semenogelins

Sgl	1	MKPNIIFVLSLLLILEKQAAVMGQKGGSKGRLPSEFSQFPHGQKGQHYSGQKGKQQTESK	60
Sgll	1	MKSIILFVLSLLLILEKQAAVMGQKGGSKGQLPSGSSQFPHGQKGQHYFGQKDQQHTKSK	60
Sgl	61	GSFSIQYTYHVDANDHDQSRKSQQYDLNALHKTTKSQRHLGGSQQLLHNKQEGRDHDKSK	120
Sgll	61	GSFSIQHTYHVDINDHDWTRKSQQYDLNALHKATKSKQHLGGSQQLLNYKQEGRDHDKSK	120
Sgl	121	GHFHRVVIHHKGGKAHRGTQNPSQDQGNSPSGKGISSQYSNTEERLWVHGLSKEQTSVSG	180
Sgll	121	GHFHMIVIHHKGGQAHHGTQNPSQDQGNSPSGKGLSSQCSNTEKRLWVHGLSKEQASASG	180
Sgl	181	AQKGRKQGGSQSSYVLQTEELVANKQQRETKNSHQNKGHYQNVVEVREEHSSKVQTSLCP	240
Sgll	181	AQKGRTQGGSQSSYVLQTEELVVNKQQRETKNSHQNKGHYQNVVDVREEHSSKLQTSLHP	240
Sgl	241	AHQDKLQHGSKDIFSTQDELLVYNKNQHQTKNLNQDQQHGRKANKISYQSSSTEERRLHY	300
Sgll	241	AHQDRLQHGPKDIFTTQDELLVYNKNQHQTKNLSQDQEHGRKAHKISYPSSRTEERQLHH	300
Sgl	301	GENGVQKDVSQSSIYS	316
Sgll	301	GEKSVQKDVSKGSISIQTEEKIHGKSQNQVTIHSQDQEHGHKENKISYQSSSTEERHLNC	360
Sgl	316		316
Sgll	361	GEKGIQKGVSKGSISIQTEEQIHGKSQNQVRIPSQAQEYGHKENKISYQSSSTEERRLNS	420
Sgl	317	QTEEKAQGKSQKQITIPSQEQEHSQKANKISYQSSSTEERRLHY	360
Sgll	421	GEKDVQKGVSKGSISIQTEEKIHGKSQNQVTIPSQDQEHGHKENKMSYQSSSTEERRLNY	480
Sgl	361	GENGVQKDVSQRSIYSQTEKLVAGKSQIQAPNPKQEPWHGENAKGESGQSTNREQDLLSH	420
Sgll	481	GGKSTQKDVSQSSISFQIEKLVEGKSQIQTPNPNQDQWSGQNAKGKSGQSADSKQDLLSH	540
Sgl	421	EQKGRHQHGSHGGLDIVIIEQEDDSDRHLAQHLNNDRNPLFT	462
Sgll	541	EQKGRYKQESSESHNIVITEHEVAQDDHLTQQYNEDRNPIST	582

Antimicrobial fragments of semenogelins from the human semen (peptides: SgIIA, SgI-29 and their common 15-aa fragment, Sg-15) bind Zn(II) and Cu(II) ions via a $[NH_2, 3N_{im}]$ donor set at physiological pH

Dorota Dudek, Adriana Miller, Aleksandra Hecel, Arian Kola, Daniela Valensin, Aleksandra Mikołajczyk, Miquel Barcelo-Oliver, Agnieszka Matera-Witkiewicz, Magdalena Rowińska-Żyrek, Inorganic Chemistry, 2023, https://pubs.acs.org/doi/10.1021/acs.inorgchem.3c02390

AMPs enhanced by Zn(II) and Cu(II):

Semenogelins

Enterococcus faecalis

	MIC (µg/mL)
.5	n/s
.5-Cu(II)	256
.5-Zn(II)	n/s
29	256
29-Cu(II)	256
29-Zn(II)	256
4	n/s
A-Cu(II)	256
A-Zn(II)	256

Zn(II) and Cu(II) binding enhances semenogelins' antimicrobial activity., most probably due to **increase of the cathionic character of the complexes**, that enable their interaction with negatively charged bacterial membranes.

In the case of the two native semenogelin fragment metal complexes, the strong local positive charge in the metal-bound HH motif correlates well with their antimicrobial activity.

SgI-29	HNKQEGRDHDKSKGHFHRVVIHHKGGKAH
SgIIA	KQEGRDHDKSKGHFHMIVIHHKGGQAHHG
Sg-15	KQEGRDHDKSKGHFH

Dorota Dudek, Adriana Miller, Aleksandra Hecel, Arian Kola, Daniela Valensin, Aleksandra Mikołajczyk, Miquel Barcelo-Oliver, Agnieszka Matera-Witkiewicz, Magdalena Rowińska-Żyrek, Inorganic Chemistry, 2023, https://pubs.acs.org/doi/10.1021/acs.inorgchem.3c02390

PvHCt – an antimicrobial shrimp peptide

Peptide sequence: FEDLPNFGHIQVKVFNHGEHIHH

Mass spectrometry:

Stoichiometry of the Zn(II) and Cu(II)-PvHCt complexes is 1:1

Potentiometric and spectroscopic studies:

Suggested modes of coordination (pH 7.4)

Zn(II) complexes: $3 N_{im}/4 N_{im}$ **Cu(II) complexes**: $2 N^{-}$, $1 N_{im}$

Whiteleg shrimp (Litopenaeus vannamei)

PvHCt: metal binding sites are indicated by NMR

Zn(II) complexes:

- no metal addition
- 0.2 eq Zn(II)
- 0.6 eq Zn(II)

Changes for H17, H20, H22, H23 residues

PvHCt: metal binding sites are indicated by NMR

Cu(II) complexes:

- no metal addition
- 0.1 eq Cu(II)
- 0.2 eq Cu(II)

Changes for H9, H17, H20 residues

FEDLPNFGHIQVKVFNHGEHIHH

PvHCt: Cu(II) induces a structural change

Whiteleg shrimp (Litopenaeus vannamei)

PvHCt: Cu(II) triggers antimicrobial activity

	Escherichia coli	MRSA	Enterococcus faecalis
	ATCC 25922	ATCC 43300	ATCC 29212
	MIC ₅₀ [μg/mL]	MIC ₅₀ [μg/mL]	MIC ₅₀ [µg/mL]
PvHCt	n/s	n/s	n/s
Zn(II)-PvHCt	n/s	32	512
Cu(II)-PvHCt	16	16	16

Whiteleg shrimp (Litopenaeus vannamei)

PvHCt: Cu(II) triggers antimicrobial activity

	Escherichia coli	MRSA	Enterococcus faecalis
	ATCC 25922	ATCC 43300	ATCC 29212
	MIC ₅₀ [μg/mL]	MIC ₅₀ [μg/mL]	MIC ₅₀ [μg/mL]
PvHCt	n/s	n/s	n/s
Zn(II)-PvHCt	n/s	37	512
	10	ĺÔ	iô

Whiteleg shrimp (*Litopenaeus vannamei*)

- PvHCt shows antimicrobial activity only in presence of metal ions
- Cu(II) drasticly increases the biological activity of PvHCt peptide

Clavanins

Clavanin A: VFQFLGKIIHHVGNFVHGFSHVF-COOH

Clavanin B: VFQFLGRIIHHVGNFVHGFSHVF-COOH

Clavanin C: VFHLLGKIIHHVGNFVYGFSHVF-COOH

Clavanin D: AFKLLGRIIHHVGNFVYGFSHVF-COOH

Clavanin E: LFKLLGKIIHHVGNFVHGFSHVF-COOH

Mass spectrometry:

Stoichiometry of the Zn(II) and Cu(II)-clavanin complexes is 1:1

Potentiometric titrations, NMR, UV-Vis and CD spectroscopy : Suggested coordination modes

Zn(II) complexes (physiological pH): 3 N_{im} **Cu(II) complexes** (physiological pH): 3 N_{im}, 1 N⁻ **Cu(II) complexes** (higher pH): 1 N_{im}, 3 N⁻ **Cu(II) complexes of ClavC:** NH₂, 2 N⁻, 1 N_{im}

Miller Adriana, Mikołajczyk Aleksandra, Matera-Witkiewicz Agnieszka, Wieczorek Robert, Rowińska-Żyrek Magdalena The chemical 'butterfly effect' explains the coordination chemistry and antimicrobial properties of clavanin complexes, Inorganic Chemistry, 2021, 60, 12730-12734

Clavanins: antimicrobial efficiency at physiological pH

Strain	Escherichia coli (-) ATCC 25922	Enterococcus faecalis (+) ATCC 29212	Staphylococcus aureus (+) ATCC 43300	Candida albicans ATCC 10231
	MIC (µg/mL)	MIC (µg/mL)	MIC (µg/mL)	MIC (µg/mL)
Clavanin A	n/d	256	n/d	128
Cu(II)-Clavanin A	n/d	n/d	n/d	128
Zn(II)-Clavanin A	256	256	n/d	64
Clavanin B	256	256	n/d	64
Cu(II)-Clavanin B	256	8	n/d	64
Zn(II)-Clavanin B	n/d	8	n/d	128
Clavanin C	n/d	128	128	64
Cu(II)-Clavanin C	128	256	128	64
Zn(II)-Clavanin C	16	64	16	16
Clavanin D	64	128	128	16
Cu(II)-Clavanin D	256	128	128	32
Zn(II)-Clavanin D	256	128	128	64
Clavanin E	n/d	n/d	n/d	32
Cu(II)-Clavanin E	256	n/d	n/d	32
Zn(II)-Clavanin E	n/d	n/d	64	16

Zig(bt) cCbavanoideCattenerhtighnegalaattimityroobitheffibiolecoylavanin family is observed, no metal-enhanced trend

Clavanins: DFT calculations, Zn(II), pH 7.4

The O=C-N-H fragment is directly below the Zn(II) ion and aims its hydrogen atom at the positively charged metal cation, pushing it out of its binding pocket = **the longest** (and most labile) **metal-ligand bonds** = easy metal dissociation

Miller Adriana, Mikołajczyk Aleksandra, Matera-Witkiewicz Agnieszka, Wieczorek Robert, Rowińska-Żyrek Magdalena The chemical 'butterfly effect' explains the coordination chemistry and antimicrobial properties of clavanin complexes, Inorganic Chemistry, 2021, 60, 12730-12734

Clavanin A: VFQFLGKIIHHVGNFVHGFSHVF-COOH

Clavanin B: VFQFLGRIIHHVGNFVHGFSHVF-COOH

Clavanin C: VFHLLGKIIHHVGNFVYGFSHVF-COOH

Clavanin D: AFKLLGRIIHHVGNFVYGFSHVF-COOH

Clavanin E: LFKLLGKIIHHVGNFVHGFSHVF-COOH

Zn(II)-clavanin A, B, E: His10, His11 and His17 imidazoles

Zn(II)-clavanin C, D: His10, His11 and His21 imidazoles

Clavanins: DFT calculations, Zn(II), pH 7.4

Pushing the metal out of its binding pocket was observed only for Zn(II)-ClavC. The different organization of the binding pocket is most likely due to the **pre-folding of the clavanin C peptide** before the addition of Zn(II) ions.

Clavanin A: VFQFLGKIIHHVGNFVHGFSHVF-COOH

Clavanin B: VFQFLGRIIHHVGNFVHGFSHVF-COOH

Clavanin C: VFHLLGKIIHHVGNFVYGFSHVF-COOH

Clavanin D: AFKLLGRIIHHVGNFVYGFSHVF-COOH

Clavanin E: LFKLLGKIIHHVGNFVHGFSHVF-COOH

Zn(II)-clavanin A, B, E: His10, His11 and His17 imidazoles

Zn(II)-clavanin C, D: His10, His11 and His21 imidazoles

	ClavA	ClavB	ClavC	ClavD	ClavE
His10	2.106	2.107	2.170	2.164	2.192
His11	2.017	2.008	2.196	2.193	2.070
His17	2.038	2.016			2.054
His21			2.199	2.030	

Metal – ligand distances (in angstroms) for clavanin A, B, C, D, E and Zn(II) complexes

Clavanins: DFT calculations, Zn(II), pH 7.4

Zn(II)-clavanin D

Zn(II)-clavanin C

Pushing the metal out of its binding pocket was observed only for Zn(II)-ClavC. The different organization of the binding pocket is most likely due to the **pre-folding of the clavanin C peptide** before the addition of Zn(II) ions.

Clavanin A: VFQFLGKIIHHVGNFVHGFSHVF-COOH

Clavanin B: VFQFLGRIIHHVGNFVHGFSHVF-COOH

Clavanin C: VFHLLGKIIHHVGNFVYGFSHVF-COOH

Clavanin D: AFKLLGRIIHHVGNFVYGFSHVF-COOH

Clavanin E: LFKLLGKIIHHVGNFVHGFSHVF-COOH

Zn(II)-clavanin A, B, E: His10, His11 and His17 imidazoles

Zn(II)-clavanin C, D: His10, His11 and His21 imidazoles

	ClavA	ClavB	ClavC	ClavD	ClavE
His10	2.106	2.107	2.170	2.164	2.192
His11	2.017	2.008	2.196	2.193	2.070
His17	2.038	2.016			2.054
His21			2.199	2.030	

Metal – ligand distances (in angstroms) for clavanin A, B, C, D, E and Zn(II) complexes

Amylin and pramlintide

- Amylin (IAPP, Islet Amyloid Polypeptide) cosecreted with insulin from beta Langerhans cells of the pancreas
- Amyloid islets are present in 95% of type II diabetes patients
- In pramlintide, a non-fibrillating amylin analouge used in a T2D treatment, in which, as in the case of rat amylin, Ala25, Ser28 and Ser29 were substituted by proline residues, what resulted in the reduction of fibrilization

Biol. Chem., Vol. 393, pp. 641-646, July 2012 • Copyright @ by Walter de Gruyter • Berlin • Boston. DOI 10.1515/hsz-2012-0107

Short Communication

Antimicrobial activity of human islet amyloid polypeptides: an insight into amyloid peptides' connection with antimicrobial peptides

Effective against: •E. coli •S. aureus

Human amylin:	KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY-NH ₂
Rat amylin:	KCNTATCATQRLANFLVRSSNNLGPVLPPTNVGSNTY-NH ₂
Pramlintide:	KCNTATCATQRLANFLVHSSNNFGPILPPTNVGSNTY-NH ₂

Pramlintide

Rat amylin

KCNTATCATQRLANFLVHSSNNFGPILPPTNVGSNTY-NH2

KCNTATCATQRLANFLVRSSNNLGPVLPPTNVGSNTY-NH2

Dudek Dorota, Alghrably Mawadda, Emwas Abdul-Hamid, Jaremko Łukasz, Jaremko Mariusz, Rowińska-Żyrek Magdalena, Copper(II) and amylin analogues: a complicated relationship, Inorganic Chemistry, 2020, 59, 2527-2535

Pramlintide

Rat amylin

KCNTATCATQRLANFLVHSSNNFGPILPPTNVGSNTY-NH2

KCNTATCATQRLANFLVRSSNNLGPVLPPTNVGSNTY-NH2

Dudek Dorota, Alghrably Mawadda, Emwas Abdul-Hamid, Jaremko Łukasz, Jaremko Mariusz, Rowińska-Żyrek Magdalena, Copper(II) and amylin analogues: a complicated relationship, Inorganic Chemistry, 2020, 59, 2527-2535

Antimicrobial activity

Strain	Escherichia coli ATCC 25922	Staphylococcus aureus ATCC 43300	Candida albicans ATCC 10231
	MIC (ug/mL)	MIC (ug/mL)	MIC (ug/mL)
rat amylin	n/d	n/d	n/d
Cu(II)-rat amylin	n/d	n/d	n/d
Zn(II)-rat amylin	n/d	n/d	n/d
pramlintide	n/d	n/d	n/d
Cu(II)-pramlintide	n/d	n/d	n/d
Zn(II)-pramlintide	n/d	n/d	<mark>256</mark>
Ac-pramlintide	n/d	n/d	n/d
Cu(II)-Ac-pramlintide	n/d	n/d	n/d
Zn(II)-Ac-pramlintide	n/d	n/d	n/d

Pramlintide forms amyloid fibrils in the presence of Zn(II)

Human amylin:	KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY-NH ₂
Rat amylin:	KCNTATCATQRLANFLVRSSNNLGPVLPPTNVGSNTY-NH ₂
Pramlintide:	KCNTATCATQRLANFLVHSSNNFGPILPPTNVGSNTY-NH ₂

Pramlintide forms amyloid fibrils in the presence of Zn(II)

Human amylin:	$KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY-NH_2$
Rat amylin:	KCNTATCATQRLANFLVRSSNNLGPVLPPTNVGSNTY-NH ₂
Pramlintide:	KCNTATCATQRLANFLVHSSNNFGPILPPTNVGSNTY-NH ₂

Conclusions: pramlintide

Zn(II) cooordination to pramlintide induces a kink in the pramlintide structure, triggering fibril formation and most likely making the complex act like a needle that could disrupt *C. albicans* cell wall

Conclusions: pramlintide

Zn(II) cooordination to pramlintide induces a kink in the pramlintide structure, triggering fibril formation and most likely making the complex act like a needle that could disrupt *C. albicans* cell wall

Shepherin: GYGGHGGHGGHGGHGGHGGHGGHGGGGHG

Wątły Joanna, Szarszoń Klaudia, Mikołajczyk Aleksandra, Grelich-Mucha Manuela, Matera-Witkiewicz Agnieszka, Olesiak-Bańska Joanna, Rowińska-Żyrek Magdalena, Inorganic Chemistry, 2023, 62, 19786-19794

Shepherin: GYGGHGGHGGHGGHGGHGGHGGHGGGGHG

Antimicrobial activity (MIC [µg/mL])

	C. albicans ATCC 10231	E. coli ATCC 25922	MRSA ATCC 43300	P. aeruginosa ATCC 27853	E. faecalis ATCC 29212	K. pneumoniae ATCC 700603	A. baumannii ATCC 19606
Shep I	n/d	n/d	n/d	n/d	n/d	n/d	n/d
Shep I – Cu(II)	n/d	n/d	n/d	n/d	n/d	n/d	n/d
Shep I – Zn(II)	16	n/d	n/d	n/d	n/d	n/d	n/d

Shepherin: GYGGHGGHGGHGGHGGHGGHGGHGGGGHG

Antimicrobial activity (MIC [µg/mL])

	C. albicans ATCC 10231	E. coli ATCC 25922	MRSA ATCC 43300	P. aeruginosa ATCC 27853	E. faecalis ATCC 29212
Shep I	n/d	n/d	n/d	n/d	n/d
Shep I – Cu(II)	n/d	n/d	n/d	n/d	n/d
Shep I – Zn(II)	16	n/d	n/d	n/d	n/d

Wątły Joanna, Szarszoń Klaudia, Mikołajczyk Aleksandra, Grelich-Mucha Manuela, Matera-Witkiewicz Agnieszka, Olesiak-Bańska Joanna, Rowińska-Żyrek Magdalena, Inorganic Chemistry, 2023, 62, 19786-19794

Shepherin: GYGGHGGHGGHGGHGGHGGHGGHGGGGHG

Antimicrobial activity (MIC [µg/mL])

	C. albicans ATCC 10231	E. coli ATCC 25922	MRSA ATCC 43300	P. aeruginosa ATCC 27853	E. faecalis ATCC 29212
Shep I	n/d	n/d	n/d	n/d	n/d
Shep I – Cu(II)	n/d	n/d	n/d	n/d	n/d
Shep I – Zn(II)	16	n/d	n/d	n/d	n/d

Shepherin: GYGGHGGHGGHGGHGGHGGHGGHGGGGHG

Antimicrobial activity (MIC [µg/mL])

	C. albicans ATCC 10231	E. coli ATCC 25922	MRSA ATCC 43300	P. aeruginosa ATCC 27853	E. faecalis ATCC 29212
Shep I	n/d	n/d	n/d	n/d	n/d
Shep I – Cu(II)	n/d	n/d	n/d	n/d	n/d
Shep I – Zn(II)	16	n/d	n/d	n/d	n/d

Ligand pH 7 \rightarrow addition of Zn(II) \rightarrow beta sheet structure \rightarrow fibrils only in case of Zn(II)-shepherin complex

 In a rational design of novel AMPmetal complexes with enhanced features which contibute to their antimicrobial efficiency

- In a rational design of novel AMPmetal complexes with enhanced features which contibute to their antimicrobial efficiency
- By attaching AMP complexes to commercially used drugs or appropriately designed targeting domains

- In a rational design of novel AMPmetal complexes with enhanced features which contibute to their antimicrobial efficiency
- By attaching AMP complexes to commercially used drugs or appropriately designed targeting domains

Garstka K., Potoczniak G., Kozłowski H., Rowińska-Żyrek M., Dalton Transactions, 2024, 53, 2848-2858 *C. albicans* selectively captures the fluorescently labelled C-terminal fragment of the Pra1 zincophore (AF647-SHQHTDSNPSATTDANSHCHTHADGEVHC)

- In a rational design of novel AMPmetal complexes with enhanced features which contibute to their antimicrobial efficiency
- By attaching AMP complexes to commercially used drugs or appropriately designed targeting domains
- In a rational design of novel AMPmetal complexes with enhanced proteolytic stability (by using unnatural amino acids)

How to enhance the stability of therapeutic AMPs? The "retro-inverso" strategy

VFHLLGKIIHHVGNFVYGFSHVF vfhllgkiihhvgnfvygfshvf fvhsfgyvfngvhhiikgllhfv

clavanin C native sequence

D-amino acid based clavanin C sequence

retro-inverso clavanin C

The N-terminal part of clavanin C is marked in red; the C-terminal one – in violet. L-amino acids are in capitals, D-amino acids – in small letters

Adriana Miller

Dorota Dudek

Joanna Wątry

Kinga Garstka

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

🏂 🛞 💰 WROCLAW MEDICAL UNIVERSITY

Wrocław University of Science and Technology

Robert Wieczorek

Tomasz Janek

Agnieszka Matera-Witkiewicz

Joanna Olesiak-Bańska

Danuta Witkowska University of Opole, Poland

Dean Wilcox Darmouth College, USA

Miquel Adrover University of Balearic Islands

Miquel Barcelo-Oliver University of Balearic Islands

Henryk Kozłowski University of Opole, Poland

Duncan Wilson University of Aberdeen, UK

Maurizio Remelli University of Ferrara

Daniela Valensin University of Siena

Biologically Active Metallopeptides

NATIONAL SCIENCE CENTRE

SONATA BIS UMO-2017/26/E/ST5/00364 OPUS UMO-2021/41/B/ST4/02654 PRELUDIUM BIS UMO-2022/47/O/ST4/01865

